• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

'We Are Creating the Medicine of the Future'

'We Are Creating the Medicine of the Future'

© iStock

Dr Gerwin Schalk is a professor at Fudan University in Shanghai and a partner of the HSE Centre for Language and Brain within the framework of the strategic project 'Human Brain Resilience.' Dr Schalk is known as the creator of BCI2000, a non-commercial general-purpose brain-computer interface system. In this interview, he discusses modern neural interfaces, methods for post-stroke rehabilitation, a novel approach to neurosurgery, and shares his vision for the future of neurotechnology.

Brain-Computer Interfaces

Neural interfaces are technologies that establish a direct connection between the brain and a computer. Special devices, such as electrodes placed on the scalp, on the brain's surface, or within the brain, are used to detect brain signals. These signals are then processed and converted into meaningful information, which can be transmitted to electronic devices such as computers, prosthetics, or speech synthesisers.

Just as smartwatches or other wearable devices give us useful information about our body, such as heart rate or the number of our steps, neurotechnology can provide important information about the health of our brain or can even help to improve it. In contrast to wearable devices, neurotechnologies are currently still used almost exclusively in laboratory settings and in limited testing in the clinic. For example, clinicians use them for rehabilitating patients after strokes or brain injuries, restoring speech functions, and performing neurosurgical procedures.

I have spent my career understanding the neural basis of neurotechnologies and on facilitating their transition into wider areas of research and the clinic. Indeed, my BCI2000 software is now the most widely used software for studying neurotechnologies. My team and I have been developing this software for nearly 25 years, and there is still quite some room for further improvements. Essentially, BCI2000 is similar to Linux or Android systems since it can be used across various applications.

A New Approach to Rehabilitation

Many post-stroke patients experience a loss of motor or speech functions. Conventional rehabilitation methods involve regular therapy sessions at specialised clinics. Patients are asked to repeat specific words or phrases multiple times and perform various exercises.

However, this approach has several limitations: therapy sessions can only take place at a facility under professional supervision. It can be inconvenient for patients, complicated, and expensive. Additionally, once patients return home, they often discontinue therapy sessions and miss the opportunity for a full recovery.

Dr Gerwin Schalk and Director of the Center for Language and Brain Olga Dragoy
© HSE University

Together with HSE, we have been developing a new rehabilitation system that uses neurotechnologies. It is designed to aid language recovery in patients with aphasia who have lost the ability to speak coherently and express their thoughts following illness or injury. Instead of repeating phrases, patients are invited to play a game. Special sensors are attached to the head to monitor brain signals. The person sees a picture on the screen and hears several words, one of which corresponds to the image. The brain must identify the correct word. If the system can detect from the brain signal that the person identified the correct word, the person receives a reward such as a smiley face. In this way, even individuals who have lost the physical ability to speak can engage in this exercise.

We now have a prototype of this system. Our next goal is to make it accessible and understandable to people without specialised knowledge. The system should be extremely simple, allowing anyone to use it, including junior medical staff at any hospital. Patients only need to place a special device on their head and begin playing.

Today, neurotechnology for rehabilitation is like a delicate young sprout. To allow it to grow stronger and flourish, we cannot immediately place it in the heart of a dense forest. We must cultivate it separately and only then integrate it into the broader environment. In our case, that means the healthcare system. This is a crucial and challenging task that requires time, expertise, effort, and patience. We are gradually creating a new model of medicine that will not replace but complement the existing one, which is primarily based on pharmacological solutions.

Invasive Neurotechnologies: A Revolution in Neurosurgery

Another important application of neurotechnologies is functional brain mapping. In brain surgery, eg when removing tumours, it is critically important to identify areas of the brain that control movement, language, and other functions. The surgeon does not always see the tumour’s boundaries, as it may not visually differ from the surrounding tissue. Meanwhile, the cost of an error in neurosurgery is extremely high: if too much tissue is removed, the patient could lose the ability to walk or speak. 

Conventional brain mapping methods involve electrical stimulation of the brain. A clinician applies an electrical current to a specific area of the patient's brain, and if the patient's arm twitches or they stop speaking, it indicates that the area is responsible for motor or language functions, respectively. This process requires significant patient involvement directly on the operating table. Additionally, electrical stimulation can sometimes trigger seizures.

Dr Gerwin Schalk
© HSE University

We have developed a simpler and safer method that analyses brain signals while the patient performs simple tasks. We use electrocorticography, which involves placing electrodes directly on the surface of the brain. The patient performs several tasks simultaneously, such as speaking, sticking out their tongue, and moving their hand. We monitor brain signals, and if we detect an increase in activity in a specific area, we can infer that this region is involved in the corresponding function. Brain mapping requires a personalised approach. While everyone's brain is generally structured similarly, functions are located in slightly different areas in different people, and tumours can further distort these areas. Therefore, for the surgeon to operate with precision, it is essential to map each individual functional area of the brain.

Neurotechnologies of the Future

There is extensive media coverage of neuroprostheses—electronic implants that help people regain the ability to walk, see, or hear. Last year, my colleagues and I demonstrated that we could read brain signals and convert them into natural-sounding speech. We were able to recreate a Pink Floyd song by analysing neuronal activity. This work contributes to neuroprostheses that can restore speech function. While all of this may seem ambitious, futuristic, and reminiscent of science fiction novels, we will initially only be able to help some people.

In the case of neuroprostheses, we restore a lost ability in a patient—whether it's the ability to walk, see, hear, or speak—without altering anything in the brain itself. In the case of rehabilitation using neurotechnologies, we aim to reorient the functioning preserved part of the brain to take over functions that were previously controlled by other areas. These changes may be less spectacular, but they are much deeper and more complex, with potential and benefits that are far greater.

Dr Gerwin Schalk
© HSE University

To pursue these exciting goals, we don't necessarily need to invent completely new technologies, but we certainly need to continue to learn how to configure the existing ones correctly and effectively. It is important to integrate these technologies into clinical practice, train clinicians, and earn the trust of patients. It's a long journey ahead, but we are already at the start of a new revolution in medicine.

Translating neurotechnologies into practical devices for monitoring health in everyday life is one of our primary goals. They should become a valuable tool for monitoring personal health, and should be accessible to everyone, not just to clinicians and researchers. For example, a person may wear a headband while sleeping and receive a report in the morning about the quality of their sleep, the state of their nervous system, and stress levels, along with recommendations on how to improve their lifestyle—such as reducing alcohol consumption, going to bed earlier, or exercising more. If we can 'translate' brain signals into meaningful information, it will mark a significant step forward in preventive medicine.

See also:

Scientists Discover Why Parents May Favour One Child Over Another

An international team that included Prof. Marina Butovskaya from HSE University studied how willing parents are to care for a child depending on the child’s resemblance to them. The researchers found that similarity to the mother or father affects the level of care provided by parents and grandparents differently. Moreover, this relationship varies across Russia, Brazil, and the United States, reflecting deep cultural differences in family structures in these countries. The study's findings have been published in Social Evolution & History.

When a Virus Steps on a Mine: Ancient Mechanism of Infected Cell Self-Destruction Discovered

When a virus enters a cell, it disrupts the cell’s normal functions. It was previously believed that the cell's protective response to the virus triggered cellular self-destruction. However, a study involving bioinformatics researchers at HSE University has revealed a different mechanism: the cell does not react to the virus itself but to its own transcripts, which become abnormally long. The study has been published in Nature.

Researchers Identify Link between Bilingualism and Cognitive Efficiency

An international team of researchers, including scholars from HSE University, has discovered that knowledge of a foreign language can improve memory performance and increase automaticity when solving complex tasks. The higher a person’s language proficiency, the stronger the effect. The results have been published in the journal Brain and Cognition.

Artificial Intelligence Transforms Employment in Russian Companies

Russian enterprises rank among the world’s top ten leaders in AI adoption. In 2023, nearly one-third of domestic companies reported using artificial intelligence. According to a new study by Larisa Smirnykh, Professor at the HSE Faculty of Economic Sciences, the impact of digitalisation on employment is uneven: while the introduction of AI in small and large enterprises led to a reduction in the number of employees, in medium-sized companies, on the contrary, it contributed to job growth. The article has been published in Voprosy Ekonomiki.

Lost Signal: How Solar Activity Silenced Earth's Radiation

Researchers from HSE University and the Space Research Institute of the Russian Academy of Sciences analysed seven years of data from the ERG (Arase) satellite and, for the first time, provided a detailed description of a new type of radio emission from near-Earth space—the hectometric continuum, first discovered in 2017. The researchers found that this radiation appears a few hours after sunset and disappears one to three hours after sunrise. It was most frequently observed during the summer months and less often in spring and autumn. However, by mid-2022, when the Sun entered a phase of increased activity, the radiation had completely vanished—though the scientists believe the signal may reappear in the future. The study has been published in the Journal of Geophysical Research: Space Physics.

‘Engagement in the Scientific Process’: HSE Launches Master’s Programme in Neurobiology

The HSE University Academic Council has elected to launch a new Master's programme in Neurobiology for students majoring in Biology. Students of the programme will have access to unique equipment and research groups, providing them with the knowledge and experience to pursue careers in science, medicine and pharmacy, IT and neurotechnology, and education and HR services.

Banking Crises Drive Biodiversity Loss

Economists from HSE University, MGIMO University, and Bocconi University have found that financial crises have a significant negative impact on biodiversity and the environment. This relationship appears to be bi-directional: as global biodiversity declines, the likelihood of new crises increases. The study examines the status of populations encompassing thousands of species worldwide over the past 50 years. The article has been published in Economics Letters, an international journal.

Scientists Discover That the Brain Responds to Others’ Actions as if They Were Its Own

When we watch someone move their finger, our brain doesn’t remain passive. Research conducted by scientists from HSE University and Lausanne University Hospital shows that observing movement activates the motor cortex as if we were performing the action ourselves—while simultaneously ‘silencing’ unnecessary muscles. The findings were published in Scientific Reports.

Russian Scientists Investigate Age-Related Differences in Brain Damage Volume Following Childhood Stroke

A team of Russian scientists and clinicians, including Sofya Kulikova from HSE University in Perm, compared the extent and characteristics of brain damage in children who experienced a stroke either within the first four weeks of life or before the age of two. The researchers found that the younger the child, the more extensive the brain damage—particularly in the frontal and parietal lobes, which are responsible for movement, language, and thinking. The study, published in Neuroscience and Behavioral Physiology, provides insights into how age can influence the nature and extent of brain lesions and lays the groundwork for developing personalised rehabilitation programmes for children who experience a stroke early in life.

Scientists Test Asymmetry Between Matter and Antimatter

An international team, including scientists from HSE University, has collected and analysed data from dozens of experiments on charm mixing—the process in which an unstable charm meson oscillates between its particle and antiparticle states. These oscillations were observed only four times per thousand decays, fully consistent with the predictions of the Standard Model. This indicates that no signs of new physics have yet been detected in these processes, and if unknown particles do exist, they are likely too heavy to be observed with current equipment. The paper has been published in Physical Review D.