Russian Scientists Develop New Compound for Treating Aggressive Tumours

A team of Russian researchers has synthesised a novel compound for boron neutron capture therapy (BNCT), a treatment for advanced cancer that uses the boron-10 isotope. The compound exhibits low toxicity, excellent water solubility, and eliminates the need for administering large volumes. Most importantly, the active substance reaches the tumour with minimal impact on healthy tissues. The study was published in the International Journal of Molecular Sciences shortly before World Cancer Day, observed annually on February 4.
Boron neutron capture therapy (BNCT) is an advanced cancer treatment that leverages the properties of the boron-10 isotope. The method involves first saturating tumour cells with boron-10, followed by irradiation with thermal neutrons. This triggers a nuclear reaction that selectively destroys cancer cells while sparing healthy tissue. Thus, the treatment success largely depends on the compound's ability to effectively deliver boron-10 to the tumour and maintain the necessary boron concentration.
A team of scientists from the HSE Faculty of Chemistry, the Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, and the N.N. Blokhin National Medical Research Centre of Oncology has developed three compounds that combine the closo-dodecaborate anion with amino acids containing a side-chain amino group. The molecules are structurally similar to natural amino acids, allowing them to 'trick' the body's transport systems into capturing and delivering them to cells, including cancer cells. This makes the substance effective at targeting tumours, where it accumulates.

One of the compounds demonstrated low toxicity, with the half-lethal dose (LD50) for experimental animals ranging from 150 to 300 mg per kilogram of body weight. In experiments, the compound not only demonstrated the ability to accumulate boron in tumour tissues but also confirmed its effectiveness in animals. When administered to laboratory mice, the boron concentration in melanoma tumour cells was six times higher than in healthy tissues after 45 minutes.
The compound can exist in two forms depending on the pH level. The first form is a sodium salt, which is highly soluble in water under conditions close to physiological pH, making it convenient for therapeutic use. The second form occurs upon acidification, when the compound transforms into an insoluble internal salt useful for obtaining a medically pure product during the stages of synthesis, isolation, and purification.
Margarita Ryabchikova
'The aim of the study was to reduce toxicity and simplify the compound purification process, building on data from previous research. As a result, three new compounds were synthesised. One of them exhibited optimal characteristics: it does not cause significant side effects when administered intravenously and dissolves well in water, setting it apart from existing therapeutic drugs,' explains study author Margarita Ryabchikova, a third-year student at the HSE Faculty of Chemistry. 'We aimed not only for high efficacy but also for production convenience. The developed method can be easily scaled to produce the required quantities of the product while remaining economically viable.'
The study demonstrated that the new compound accumulates more effectively in the tissues of certain types of tumours compared to the currently used drug. This is an important step toward developing a safer and more accessible therapy. The research is still in its early stages, but this development has the potential to significantly improve cancer treatment outcomes and broaden the applications of boron neutron capture therapy in the fight against various types of tumours.
See also:
Scientists Discover Why Parents May Favour One Child Over Another
An international team that included Prof. Marina Butovskaya from HSE University studied how willing parents are to care for a child depending on the child’s resemblance to them. The researchers found that similarity to the mother or father affects the level of care provided by parents and grandparents differently. Moreover, this relationship varies across Russia, Brazil, and the United States, reflecting deep cultural differences in family structures in these countries. The study's findings have been published in Social Evolution & History.
When a Virus Steps on a Mine: Ancient Mechanism of Infected Cell Self-Destruction Discovered
When a virus enters a cell, it disrupts the cell’s normal functions. It was previously believed that the cell's protective response to the virus triggered cellular self-destruction. However, a study involving bioinformatics researchers at HSE University has revealed a different mechanism: the cell does not react to the virus itself but to its own transcripts, which become abnormally long. The study has been published in Nature.
Researchers Identify Link between Bilingualism and Cognitive Efficiency
An international team of researchers, including scholars from HSE University, has discovered that knowledge of a foreign language can improve memory performance and increase automaticity when solving complex tasks. The higher a person’s language proficiency, the stronger the effect. The results have been published in the journal Brain and Cognition.
Artificial Intelligence Transforms Employment in Russian Companies
Russian enterprises rank among the world’s top ten leaders in AI adoption. In 2023, nearly one-third of domestic companies reported using artificial intelligence. According to a new study by Larisa Smirnykh, Professor at the HSE Faculty of Economic Sciences, the impact of digitalisation on employment is uneven: while the introduction of AI in small and large enterprises led to a reduction in the number of employees, in medium-sized companies, on the contrary, it contributed to job growth. The article has been published in Voprosy Ekonomiki.
Lost Signal: How Solar Activity Silenced Earth's Radiation
Researchers from HSE University and the Space Research Institute of the Russian Academy of Sciences analysed seven years of data from the ERG (Arase) satellite and, for the first time, provided a detailed description of a new type of radio emission from near-Earth space—the hectometric continuum, first discovered in 2017. The researchers found that this radiation appears a few hours after sunset and disappears one to three hours after sunrise. It was most frequently observed during the summer months and less often in spring and autumn. However, by mid-2022, when the Sun entered a phase of increased activity, the radiation had completely vanished—though the scientists believe the signal may reappear in the future. The study has been published in the Journal of Geophysical Research: Space Physics.
Banking Crises Drive Biodiversity Loss
Economists from HSE University, MGIMO University, and Bocconi University have found that financial crises have a significant negative impact on biodiversity and the environment. This relationship appears to be bi-directional: as global biodiversity declines, the likelihood of new crises increases. The study examines the status of populations encompassing thousands of species worldwide over the past 50 years. The article has been published in Economics Letters, an international journal.
Scientists Discover That the Brain Responds to Others’ Actions as if They Were Its Own
When we watch someone move their finger, our brain doesn’t remain passive. Research conducted by scientists from HSE University and Lausanne University Hospital shows that observing movement activates the motor cortex as if we were performing the action ourselves—while simultaneously ‘silencing’ unnecessary muscles. The findings were published in Scientific Reports.
Russian Scientists Investigate Age-Related Differences in Brain Damage Volume Following Childhood Stroke
A team of Russian scientists and clinicians, including Sofya Kulikova from HSE University in Perm, compared the extent and characteristics of brain damage in children who experienced a stroke either within the first four weeks of life or before the age of two. The researchers found that the younger the child, the more extensive the brain damage—particularly in the frontal and parietal lobes, which are responsible for movement, language, and thinking. The study, published in Neuroscience and Behavioral Physiology, provides insights into how age can influence the nature and extent of brain lesions and lays the groundwork for developing personalised rehabilitation programmes for children who experience a stroke early in life.
Scientists Test Asymmetry Between Matter and Antimatter
An international team, including scientists from HSE University, has collected and analysed data from dozens of experiments on charm mixing—the process in which an unstable charm meson oscillates between its particle and antiparticle states. These oscillations were observed only four times per thousand decays, fully consistent with the predictions of the Standard Model. This indicates that no signs of new physics have yet been detected in these processes, and if unknown particles do exist, they are likely too heavy to be observed with current equipment. The paper has been published in Physical Review D.
HSE Scientists Reveal What Drives Public Trust in Science
Researchers at HSE ISSEK have analysed the level of trust in scientific knowledge in Russian society and the factors shaping attitudes and perceptions. It was found that trust in science depends more on everyday experience, social expectations, and the perceived promises of science than on objective knowledge. The article has been published in Universe of Russia.


