• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Russian Scientists Integrate Microdisk Laser and Waveguide on a Single Substrate

Russian Scientists Integrate Microdisk Laser and Waveguide on a Single Substrate

© iStock

A group of Russian scientists led by Professor Natalia Kryzhanovskaya at HSE Campus in St Petersburg has been researching microdisk lasers with an active region based on arsenide quantum dots. For the first time, researchers have successfully developed a microdisk laser coupled with an optical waveguide and a photodetector on a single substrate. This design enables the implementation of a basic photonic circuit on the same substrate as the radiation source (microlaser). In the future, this will help speed up data transfer and reduce equipment weight without compromising quality. The study results have been published in Semiconductors.

The growing demands for higher speed and larger volumes of transmitted information necessitate improvements to current communication methods. Photonic integrated circuits (PICs), which use light to transmit information, operate faster, generate less heat, are more resistant to interference, and consume less energy compared to their electronic counterparts.

However, their effective use requires efficient, compact light sources, such as gallium arsenide (GaAs) microdisk lasers. The length of a conventional Fabry–Perot laser is around 1 mm, while a microdisk laser can be up to 1,000 times smaller. In this study, the laser size was reduced to a diameter of 30 to 40 microns.

Effective directional radiation output is essential for the successful implementation of optical communication in photonic integrated circuits (PICs). Directional radiation can be achieved by optically coupling microlasers with a nearby waveguide. The authors of the paper designed and fabricated both a microlaser and a waveguide from a single epitaxial structure, resulting in reduced size and increased stability.

'Creating microdisk lasers coupled to a waveguide is a challenging task. This process involves developing a thin-film epitaxial structure with a specific composition. In our case, we employed gas-phase epitaxy of metal-organic compounds, a method for layered formation of crystals of different substances on top of one another. Lasers and waveguides were created from the resulting structure. This was made possible thanks to the innovations developed by the Mokerov Institute of Ultra High Frequency Semiconductor Electronics of the Russian Academy of Sciences. All these processes required the use of advanced technology and the efforts of a team of experienced, talented, and qualified specialists,' according to Nikita Fominykh, Junior Research Fellow of the International Laboratory of Quantum Optoelectronics at HSE Campus in St Petersburg.

In addition to radiation sources, radiation receivers are also essential for the operation of PICs. In this work, waveguide photodetectors fulfil this role. Thus, it becomes possible to create an optocoupler that combines a microlaser and a waveguide photodetector with a matching operating wavelength on a single substrate. The photodetector used in the optocoupler measured no more than 90 microns, enabling the creation of a highly compact and energy-efficient optocoupler.

'Microdisk lasers are unique optoelectronic devices. With a size comparable to the diameter of a spider silk thread, they can generate a significant amount of optical power. We have experimentally demonstrated that all optoelectronic components necessary for a photonic integrated circuit—a microdisk laser, a waveguide, and a photodetector—can be fabricated from a single epitaxial heterostructure on the same substrate,' says co-author of the paper Natalia Kryzhanovskaya, Head of the International Laboratory of Quantum Optoelectronics at HSE Campus in St Petersburg.

See also:

Z-Flipons: How Specific DNA Regions Help Regulate Gene Function

Researchers at HSE University and InsideOutBio have applied machine learning to identify the location and functions of mirror-twisted DNA structures, known as Z-flipons, in human and mouse genomes. The scientists discovered which Z-DNA regions were conserved in both species throughout evolution and demonstrated for the first time that Z-DNA accelerates the process of creating RNA copies of genes. The findings will contribute to the development of new treatments for genetic diseases. The study has been published in Scientific Reports.

HSE Researchers Develop Python Library for Analysing Eye Movements

A research team at HSE University has developed EyeFeatures, a Python library for analysing and modelling eye movement data. This tool is designed to simplify the work of scientists and developers by enabling them to efficiently process complex data and create predictive models.

Scientists Identify Fifteen Key Motives Driving Human Behaviour

Researchers at HSE University and the London School of Hygiene and Tropical Medicine have identified 15 key motives that drive human behaviour. By analysing people's views, preferences, and actions through an evolutionary lens, they demonstrated how these motives intertwine to shape habits and interpersonal relationships. The findings have been published in Personality and Individual Differences.

HSE Neurolinguists Create Russian Adaptation of Classic Verbal Memory Test

Researchers at the HSE Centre for Language and Brain and Psychiatric Hospital No. 1 Named after N.A. Alexeev have developed a Russian-language adaptation of the Rey Auditory Verbal Learning Test. This classic neuropsychological test evaluates various aspects of auditory verbal memory in adults and is widely used in both clinical diagnostics and research. The study findings have been published in The Clinical Neuropsychologist.

Tickling the Nerves: Why Crime Content is Popular

Consumers of content about serial killers watch and read it to experience intense emotions that are often lacking in everyday life and to understand the reasons that drive people to commit crimes. However, such content does not contribute to increased aggression. These conclusions were drawn by sociologists from HSE University. The results of their study have been published in Crime, Media, Culture: An International Journal.

HSE Researchers Prove the Existence of Nash Equilibrium for a New Class of Problems in Game Theory

Researchers at HSE University's St Petersburg School of Economics and Management have been exploring methods for the efficient allocation of resources in systems involving multiple players. The scientists have proven the existence of strategies for optimal decision-making in competition for limited, discrete resources in four different cases. The developed mathematical model can be applied in various fields, ranging from education and medicine to managing networks and computing power. The paper has been published in Games and Economic Behaviour.

Researchers at HSE Centre for Language and Brain Reveal Key Factors Determining Language Recovery in Patients After Brain Tumour Resection

Alina Minnigulova and Maria Khudyakova at the HSE Centre for Language and Brain have presented the latest research findings on the linguistic and neural mechanisms of language impairments and their progression in patients following neurosurgery. The scientists shared insights gained from over five years of research on the dynamics of language impairment and recovery.

Neuroscientists Reveal Anna Karenina Principle in Brain's Response to Persuasion

A team of researchers at HSE University investigated the neural mechanisms involved in how the brain processes persuasive messages. Using functional MRI, the researchers recorded how the participants' brains reacted to expert arguments about the harmful health effects of sugar consumption. The findings revealed that all unpersuaded individuals' brains responded to the messages in a similar manner, whereas each persuaded individual produced a unique neural response. This suggests that successful persuasive messages influence opinions in a highly individual manner, appearing to find a unique key to each person's brain. The study findings have been published in PNAS.

Russian Scientists Improve Water Purification Membranes Using Metal Ions

Researchers have proposed using polymer membranes modified with copper, zinc, and chromium metal ions for water purification. These polymers were used for the first time in water purification via electrodialysis. Copper-based membranes demonstrated record selectivity for monovalent ions, opening new possibilities for sustainable water recycling. The study has been published in the Journal of Membrane Science

Independent Experts More Effective Than Collective Expertise in Decision-Making Under Uncertainty

A collaborative study by Sergey Stepanov, Associate Professor at the HSE Faculty of Economic Sciences, and experts from INSEAD Business School and NYU Shanghai, indicates that in making decisions under high uncertainty, where it is unclear which choice is superior, advice from independent experts may be more beneficial than a collective opinion from a group of experts. The study has been published in Games and Economic Behavior.