Большие группы студентов эффективнее используют ИИ в обучении

Исследователи Института образования и факультета экономических наук НИУ ВШЭ узнали, от каких факторов зависит качество групповой работы студентов, когда они выполняют ее в сотрудничестве с ИИ. Оказалось, что, помимо уровня знаний команды, важен размер группы: чем она больше, тем эффективнее работа. Статья ученых опубликована в журнале Innovations in Education and Teaching International.
Групповое обучение — один из самых распространенных и важных методов в высшем образовании. Однако до сих пор не вполне понятно, какие именно факторы делают командную работу эффективной.
Ситуация стала интереснее после появления ИИ, который студенты начали активно использовать в учебе. Эксперты из НИУ ВШЭ Галина Шульгина, Александра Гетман, Илья Гуленков и Джейми Костли выяснили, как особенности групп — размер и уровень знаний участников — влияют на результаты работы, если в процессе задействован ИИ.
В исследовании участвовали 196 студентов второго курса бакалавриата (55% мужчин и 45% женщин), которым предстояло решать задачи в команде в рамках 16-недельного курса макроэкономики. Испытуемых разделили на группы от пяти до восьми человек с разным уровнем знаний и подготовки. Сначала участники решали задачи сами. Затем в течение четырех семинаров группы работали с ChatGPT 3.5. Задачей было не просто получить ответ от нейросети, а критически осмыслить его, применить экономические модели курса и представить комплексное решение.
Ученые оценивали качество полученных решений в соответствии с тем, насколько верными и подробными были ответы студентов. Максимальный балл получали команды, которые не только правильно применяли ИИ, но и указывали на его ограничения, продемонстрировав тем самым высокий уровень понимания материала.
Ученым удалось выявить несколько закономерностей в использовании ИИ группами. Во-первых, лучшие результаты показали команды, участники которых были примерно на одном уровне. А вот группы с сильным разбросом в знаниях справлялись хуже, хотя в педагогике принято считать, что разнообразие знаний внутри команды помогает, а не мешает.
Галина Шульгина
«Для нас стало неожиданным, что чем выше был разброс в оценках студентов, тем менее качественным оказалось итоговое решение. Это может быть связано с тем, что более подготовленные участники, вместо того чтобы концентрироваться на задании, тратили время на объяснения и согласование решения, а менее подготовленные не могли в полной мере использовать возможности ИИ. Более сильные студенты лучше умеют взаимодействовать с ИИ: формулировать запросы, критически оценивать ответы и использовать их в рассуждениях», — объясняет младший научный сотрудник Международной лаборатории проектирования и исследований в онлайн-обучении Института образования НИУ ВШЭ Галина Шульгина.
Во-вторых, данные отчетливо указывали на положительную связь между большим размером группы и лучшими результатами работы с ИИ. Так, команды из 7–8 человек в среднем справлялись с заданиями лучше групп из 5–6 участников. Каждый дополнительный участник группы повышал итоговый балл. Это противоречит распространенному в педагогике мнению о том, что малые группы работают эффективнее больших. Ученые предположили, что крупные команды обладают большим интеллектуальным ресурсом, разнообразием взглядов и навыков, что помогает им продуктивнее взаимодействовать с нейросетями.
Александра Гетман
«Однако это не означает, что рост эффективности будет продолжаться бесконечно. Можно предположить, что после достижения определенного числа участников группы начнут проявляться негативные эффекты: усложнится координация, возрастет время на согласование и поддержание общего понимания задачи», — указывает младший научный сотрудник Международной лаборатории проектирования и исследований в онлайн-обучении Института образования НИУ ВШЭ Александра Гетман.
Несмотря на то что для окончательных выводов нужны дальнейшие исследования, авторы считают, что для оптимизации использования ИИ в образовании следует подбирать группы студентов с одинаковым уровнем подготовки и объединять их в большие группы. По мнению исследователей, использовать ИИ можно при изучении любых дисциплин.
Илья Гуленков
«Потенциал для внедрения ИИ в групповую работу есть на любых курсах, вне зависимости от области знаний и уровня подготовки. Ключевая задача преподавателя при организации такой работы — заранее сформировать у студентов ожидания о том, как и зачем может быть использован ИИ в их работе на курсе. Если студенты увидят образцы успешного применения, то ИИ может стать дополнительным членом команды в рамках любых дисциплин. Мы наблюдаем за тем, как студенты используют более продвинутые версии моделей (ChatGPT 5, ChatGPT 5 Thinking и т.д.) и видим в партнерстве студент — ИИ большой потенциал. Теперь это касается уже не только стандартизированных простых задач, но и более сложных запросов, требующих глубокого понимания контекста, работы со множеством источников информации, продвинутой аргументации. Роль собственной экспертизы студентов в работе с такими моделями только возрастает: все модели теперь выдают правдоподобные ответы, но их содержание необходимо осмыслять критически», — считает преподаватель факультета экономических наук НИУ ВШЭ Илья Гуленков.
Вам также может быть интересно:
Как мозг обрабатывает слово: исследователи НИУ ВШЭ сравнили читательские маршруты взрослых и детей
Исследователи Центра языка и мозга ВШЭ с помощью магнитоэнцефалографии изучили, как мозг взрослых и детей реагирует на слова при чтении. Они показали, что у детей мозг дольше обрабатывает даже часто употребляющиеся в речи слова, а слова, которые встречаются редко, и псевдослова обрабатывает одинаково — медленно и по частям. С возрастом система перестраивается: высокочастотные слова переходят на быстрый маршрут, а вот новые сочетания букв по-прежнему анализируются медленно. Исследование опубликовано в журнале Psychophysiology.
Зеленый энергопереход: от мифов к реалиям
В 2025 году в Вышке стартовал стратегический технологический проект (СТП) «Национальный центр социально-экономического и научно-технологического прогнозирования». Институт экономики природных ресурсов и изменения климата ВШЭ формирует прогнозы развития мировой и российской экономики и энергетики с учетом фактора «зеленой трансформации». Игорь Макаров, директор института и руководитель департамент мировой экономики, рассказал о глобальном ландшафте климатического регулирования, «черных лебедях» и роли ИИ в борьбе с изменением климата.
Стратегические технологические проекты Вышки в 2025 году
В 2025 году Высшая школа экономики продолжила участие в программе стратегического академического лидерства «Приоритет-2030», обеспечив фокус на технологическое лидерство согласно новой рамке программы «Приоритет-2030». Важный элемент стратегии технологического лидерства университета — стратегические технологические проекты, направленные на создание востребованных наукоемких продуктов и услуг.
Переход к устойчивому развитию требует глубокой структурной трансформации бизнеса
Группа ученых предложила оценивать ESG-трансформацию бизнеса через коэффициент смены партнеров в цепочках сырьевых и сбытовых поставок. Исследователи отмечают, что путь к устойчивости требует глубокой и зачастую затратной перестройки партнерской сети. Этот и другие доклады были представлены на III Международной ежегодной конференции “ESG Corporate Dynamics: the Challenges for Emerging Capital Markets”.
Исследователи НИУ ВШЭ выяснили, как нейросети понимают каламбуры
Международная команда с участием исследователей ФКН НИУ ВШЭ представила KoWit-24 — корпус из 2700 русскоязычных заголовков «Коммерсанта» с игрой слов. Корпус позволил оценить, как искусственный интеллект распознает и объясняет языковую игру. Эксперименты с пятью большими языковыми моделями подтвердили: даже передовые системы пока ошибаются, причем интерпретация игры слов является для них более сложной задачей, чем ее выявление. Результаты работы были представлены на конференции RANLP, cтатья доступна в репозитории Arxiv.org, датасет и код для воспроизведения экспериментов — в GitHub.
«Алгебраическая геометрия — это геометрия идеальных форм»
Созданная 15 лет назад в Вышке Лаборатория алгебраической геометрии и ее приложений изучает фундаментальную математику, формируя единый язык математической науки. Лаборатория стала известным и авторитетным научным центром, признанием ее заслуг стали доклады сотрудников на международных математических конгрессах и публикация статей в ведущих мировых математических журналах. О деятельности научного подразделения новостная служба «Вышка.Главное» побеседовала с заведующим лабораторией профессором РАН Дмитрием Калединым.
МИЭМ и «ИнфоВотч» разработали сценарии для систем защиты информации от внутренних угроз
Сценарии позволяют моделировать инциденты, выявлять и анализировать действия инсайдеров, противодействовать фишинговым атакам, выстраивать политику защиты и готовить заключения по результатам расследований. Они прошли полномасштабную апробацию в рамках чемпионата профессионального мастерства «Профессионалы».
Вышка Онлайн в четвертый раз стала победителем премии «Эффективное образование»
Проект онлайн-кампуса НИУ ВШЭ «Обучаем навыкам будущего: ИИ-портал Вышки» стал победителем в номинации «Образовательная экосистема года в области ИИ». Награда «Эффективное образование» вручается с 2017 года за лучшие проекты и практики в области корпоративного обучения и развития образования.
Создавать условия для жизни и развивать инфраструктуру: как сделать Сибирь модной
В Вышке проходит Всероссийская научно-практическая конференция «II Тобольские чтения», организованная факультетом мировой экономики и мировой политики НИУ ВШЭ. Эксперты, ученые, представители власти, бизнеса и культуры обсуждают вопросы сибиризации России — сдвига центра развития страны к Уралу и Сибири. В работе конференции принял участие заместитель руководителя Администрации Президента РФ Максим Орешкин.
ИИ в науке: страхи и чаяния российских ученых
Искусственный интеллект стал привычным инструментом в ряде стран, однако в российской науке его внедрение пока остается фрагментарным. К такому выводу пришли авторы первого в стране комплексного исследования использования технологий ИИ в научной деятельности. Они провели интервью с ведущими российскими учеными и расспросили их о сферах применения, возможностях и барьерах технологии.


