On one way of constructing unbalanced TU-based permutations

Denis Fomin

HSE University

Definitions I

Definition 1

Walsh-Hadamard transform $W_S(a, b)$ of (n, m)-function S for $a \in \mathbb{F}_2^n$, $b \in \mathbb{F}_2^m$ is defined as follows:

$$W_S^{a,b} = \sum_{x \in \mathbb{F}_2^n} (-1)^{\langle a,x \rangle + \langle b,S(x) \rangle}.$$

Definition 2

The nonlinearity of (n, m)-function S is denote as N_S and defined as follows:

$$N_S = 2^{n-1} - rac{1}{2} \max_{\substack{a \in \mathbb{F}_2^n, \ b \in \mathbb{F}_2^m \setminus \theta}} \left| W_S^{a,b} \right|.$$

Definition 3

The algebraic degree (minimum degree) $\deg(S)$ of (n, m)-function S is the minimum degree among all the component functions of S: $\langle a, S(x) \rangle$, $a \in \mathbb{F}_2^m \setminus \theta$:

$$\deg(S) = \min_{a \in \mathbb{F}_2^m \setminus \theta} \deg(\langle a, S(x) \rangle).$$

Definition 4

The maximum degree of (n, m)-function S is the maximum degree among all the component functions of $S: \langle a, S(x) \rangle, a \in \mathbb{F}_2^m \backslash \theta$:

$$\deg_m(S) = \max_{a \in \mathbb{F}_2^m \setminus \theta} \deg \left(\langle a, S(x) \rangle \right).$$

Definition 5

For $a \in \mathbb{F}_2^n \backslash \theta, b \in \mathbb{F}_2^m$ let

$$\delta_S^{a,b} = |\{x \in \mathbb{F}_{2^n} | S(x+a) + S(x) = b\}|.$$

An (n, m)-function S is called differentially δ_S -uniform if

$$\delta_S = \max_{\substack{a \in \mathbb{F}_2^n \setminus \theta, \\ b \in \mathbb{F}_2^m}} \delta_S^{a,b}.$$

Consider the set \mathcal{G}_k of (n+m,1)-functions $G(x_1,\ldots,x_n,y_1,\ldots,y_m)$, such that $\deg(\underline{G}) \leq k, k \in \mathbb{N}$ and for each $\overline{x} \in \mathbb{F}_2^n$ if we substitute in place of each variable y_i , $i \in \overline{1,m}$, the value of the corresponding Boolean function $f_i(\overline{x})$, then the value of the function $G(x_1,\ldots,x_n,f_1(\overline{x}),\ldots,f_m(\overline{x}))$ is equals to 0:

$$\mathcal{G}_{k} = \left\{G(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}) \colon G(x_{1}, \ldots, x_{n}, f_{1}\left(\overline{x}\right), \ldots, f_{m}\left(\overline{x}\right)) = 0 \ \forall \overline{x} \in \mathbb{F}_{2}^{n}\right\}.$$

The set \mathcal{G}_k is a subgroup of the ring of polynomials of degree non above k. Let's denote r_F^k — the basis size of \mathcal{G}_k .

Definition 6

A minimum number k such that $r_F^k \neq 0$, is called graph algebraic immunity of F and denoted by $AI_{gr}(F)$.

Definition 7

Let F be an (n,m)-function, $1 \le t \le \min(n,m)$, $x_1, y_1 \in \mathbb{F}_2^t$, $x_2 \in \mathbb{F}_2^{n-t}$, $y_2 \in \mathbb{F}_2^{m-t}$, $x \in \mathbb{F}_2^n$, $x = x_1 || x_2, y = y_1 || y_2, T(x_1, x_2)$ is a (n,t) function such that if we fix value x_2 by any value from $\mathbb{F}_{2^{n-t}}$ then the function T is a bijection for value x_1 , U is any (n,m-t)-function. Then if the function F has the following representation:

$$F(x) = F(x_1 || x_2) = (T(x_1, x_2), U(x_2, T(x_1, x_2))),$$
(1)

then such representation of F in the form (1) is called the TU-representation.

Known results I

Let \mathbb{F}_2^n , $n \ge 6$ is a vector space with elements $v = (v_1, v_2, \dots, v_n)$.

For each element $v \in \mathbb{F}_2^n$ we put the match the pair (v', v_n) , where $v' \in \mathbb{F}_{2^{n-1}}$, $v' = v_{n-1}x^{n-2} + \cdots + v_1$, $\mathbb{F}_{2^{n-1}} = \mathbb{F}_2[x]/f(x)$, $\deg(f) = n - 1$.

This correspondence specifies bijective mapping of the set \mathbb{F}_2^n to $\mathbb{F}_{2^{n-1}} \times \mathbb{F}_2$.

Let tr(x) be a trace function from the field $\mathbb{F}_{2^{n-1}}$ to \mathbb{F}_2 .

For any $c \in \mathbb{F}_{2^n-1} \setminus \{0,1\}$ such that $\operatorname{tr}(c) = \operatorname{tr}(c^{-1})$, and arbitrary Boolean function g of n-1 variables in 1 the function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ us defined as follows:

$$F(v_1, v_2, \dots, v_{n-1}, v_n) = \begin{cases} \left(v'^{-1}, g(v')\right), & v_n = 0\\ \left(c \cdot v'^{-1}, g(v' \cdot c^{-1}) + 1\right), & v_n = 1 \end{cases},$$
(2)

where $v' \in \mathbb{F}_{2^{n-1}}$, v' is defined by the vector $(v_1, v_2, \dots, v_{n-1}) \in \mathbb{F}_2^{n-1}$, $0^{-1} = 0$.

F is differentially 4-uniform permutation, that has the maximal algebraic degree equals to n-1, and the nonlinearity less or equals to $2^{n-1}-2|2^{(n+1)/2}|-4$.

¹Claude Carlet, Deng Tang, Xiaohu Tang, and Qunying Liao., "New construction of differentially 4-uniform bijections. In Dongdai Lin, Shouhuai Xu, and Moti Yung, editors, Information Security and Cryptology, pages 22–38, Cham, 2014. Springer International Publishing.".

F has a TU-decomposition

Proposition 1

Let
$$x_1 \in \mathbb{F}_2^{n-1}$$
, $x_2 \in \mathbb{F}_2$,

- $T: \mathbb{F}_2^{n-1} \times \mathbb{F}_2 \to \mathbb{F}_2^{n-1}, T(x_1, x_2) = x_1^{-1} \cdot c^{x_2},$
- $U: \mathbb{F}_2^1 \times \mathbb{F}_2^{n-1} \to \mathbb{F}_2$, $U(x_2, x_1) = g(x_1^{-1}) + x_2$.

Then

- If we fix x_2 by an arbitrary value from \mathbb{F}_2 then the function T is a bijection on the variable x_1 ,
- 2 if we fix x_1 by an arbitrary value from \mathbb{F}_2^{n-1} then the function U is a bijection on the variable x_2 ,
- \blacksquare functions T and U define a TU-representation of permutation defined by (2).

For the function F that has a TU-representation given by equation (1), denote

- for $a \in \mathbb{F}_2^t$ the value $\delta_{T,a}$ is equal to δ if permutation T with fixed $x_2 = a$ is differentially δ -uniform,
- for $a \in \mathbb{F}_2^t$, α_1 , $\beta_1 \in \mathbb{F}_2^{n-t}$, $\alpha_2 \in \mathbb{F}_2^t \setminus \theta$, the value $\Delta_{T,a}^{\alpha_1,\alpha_2,\beta_1}$ is the number of solutions to the equation:

$$T(x_1, a) + T(x_1 + \alpha_1, a + \alpha_2) = \beta_1.$$

Theorem 8

Let $n, t \in \mathbb{N}$, $1 \le t \le n-1$, $x_1 \in \mathbb{F}_2^{n-t}$, $x_2 \in \mathbb{F}_2^t$,

- function $T: \mathbb{F}_2^{n-t} \times \mathbb{F}_2^t \to \mathbb{F}_2^{n-1}$ such that fixation x_2 by arbitrary value from \mathbb{F}_2^t the function $T(x_1, x_2)$ is the permutation on the variable x_1 ,
- function $U: \mathbb{F}_2^t \times \mathbb{F}_2^{n-t} \to \mathbb{F}_2^t$ such that fixation x_1 by arbitrary value from \mathbb{F}_2^{n-t} the function $U(x_2, x_1)$ is the permutation on the variable x_2 .

Then the permutation F, defined by (1) is differentially δ -uniform, where

$$\delta \leq 2^{t} \cdot \max \left\{ \max_{a \in \mathbb{F}_{2}^{t}} \left(\delta_{T,a} \right), \max_{\substack{\alpha_{1}, \beta_{1} \in \mathbb{F}_{2}^{n-t}, \\ a \in \mathbb{F}_{2}^{t}, \ \alpha_{2} \in \mathbb{F}_{2}^{t} \setminus \theta}} \left(\Delta_{T,a}^{\alpha_{1}, \alpha_{2}, \beta_{1}} \right) \right\}. \tag{3}$$

Corollary 9

In the conditions of theorem 8 let t = 1, $\delta_{T,a} \leq \delta$, $a \in \mathbb{F}_2$, then the permutation F, defined by (1) is differentially 2δ -uniform $\max_{\alpha_1, \beta_1 \in \mathbb{F}_2^{n-1}} \Delta_{T,0}^{\alpha_1, 1, \beta_1} \leq \delta$.

According to the corollary in order to construct a differentially 4-uniform permutation F one must take two differential 2-uniform permutations π_1 and π_2 of the space \mathbb{F}_2^{n-1} . And if $T(x_1,0)=\pi_1$ and $T(x_1,1)=\pi_2$, then it remains to check that the number of solutions of following equations:

$$\pi_1(x) + \pi_2(x + \alpha_1) = \beta_1$$

for all possible values of $\alpha_1, \beta_1 \in \mathbb{F}_2^{n-1}$ are not greater than 2.

On the way of constructing differentially 4 and 6-uniform permutations based on x^{-1} permutation

Proposition 2

Let $x_1 \in \mathbb{F}_2^{n-1}$, n be an even number, $x_2 \in \mathbb{F}_2$, f be an arbitrary Boolean function of n-1 variables, $c \in \mathbb{F}_{2^{n-1}} \setminus \{\theta, 1\}$,

- $T: \mathbb{F}_2^{n-1} \times \mathbb{F}_2 \to \mathbb{F}_2^{n-1}, T(x_1, x_2) = x_1^{-1} \cdot c^{x_2},$
- $U: \mathbb{F}_2^1 \times \mathbb{F}_2^{n-1} \to \mathbb{F}_2, \ U(x_2, x_1) = f(x_1) + x_2.$

Then equation (1) defines the permutation F, and at the same time

- II if $tr(c) = tr(c^{-1}) = 1$, then $\delta_F = 4$,
- 2 otherwise $\delta_F = 6$.

Remark 1

The proof of point 1 of the previous proposition was previously published in 2 .

²Claude Carlet, Deng Tang, Xiaohu Tang, and Qunying Liao., "New construction of differentially 4-uniform bijections. In Dongdai Lin, Shouhuai Xu, and Moti Yung, editors, Information Security and Cryptology, pages 22–38, Cham, 2014. Springer International Publishing.".

On the way of constructing differentially 6-uniform permutations based on x^3 permutation

Proposition 3

Let $x_1 \in \mathbb{F}_2^{n-1}$, n be an even number, $x_2 \in \mathbb{F}_2$, f be an arbitrary Boolean function of n-1 variables, $c \in \mathbb{F}_{2^{n-1}} \setminus \{\theta, 1\}$,

- $lacksquare T\colon \mathbb{F}_2^{n-1} imes \mathbb{F}_2 o \mathbb{F}_2^{n-1}$, $T\left(x_1,x_2
 ight)=x_1^3\cdot c^{x_2}$,
- $U: \mathbb{F}_2^1 \times \mathbb{F}_2^{n-1} \to \mathbb{F}_2, \ U(x_2, x_1) = f(x_1) + x_2.$

Then equation (1) *defines the permutation F, and* $\delta_F = 6$.

Hypotheses

Proposition 4

Let $x_1 \in \mathbb{F}_2^{n-1}$, n be an even number, $x_2 \in \mathbb{F}_2$, $a, b \in \mathbb{F}_{2^{n-1}}$, $T : \mathbb{F}_2^{n-1} \times \mathbb{F}_2 \to \mathbb{F}_2^{n-1}$

- $T(x_1,0) = x_1^3$,
- $T(x_1, 1) = x_1^3 + a \cdot x_1^2 + b \cdot x_1.$

Then either $\alpha_1 \in \mathbb{F}_{2^{n-1}}$ and $\beta_1 \in \mathbb{F}_{2^{n-1}}$ exist such that the number of solutions to the equation

$$T(x_1 + \alpha_1, 0) + T(x_1, 1) = \beta_1$$

will equal to 2^{n-1} or $T(x_1, 1)$ is not a permutation.

Proposition 5

Let $x_1 \in \mathbb{F}_2^{n-1}$, n e an even number, $x_2 \in \mathbb{F}_2$, f be an arbitrary Booleann function of n-1 variables, $c \in \mathbb{F}_{2^{n-1}} \setminus \{\theta, 1\}$,

- $T: \mathbb{F}_2^{n-1} \times \mathbb{F}_2 \to \mathbb{F}_2^{n-1}, T(x_1, 0) = x_1^3, T(x_1, 0) = x_1^{-1},$
- $U: \mathbb{F}_2^1 \times \mathbb{F}_2^{n-1} \to \mathbb{F}_2, \ U(x_2, x_1) = f(x_1) + x_2.$

Then the equation (1) specifies differentially 8-uniform permutation.

Proposition 6

Let t = 2, $x_1 \in \mathbb{F}_2^{n-t}$, $x_2 \in \mathbb{F}_2^t$,

- $T: \mathbb{F}_2^{n-t} \times \mathbb{F}_2^t \to \mathbb{F}_2^{n-1}$, when fixing an arbitrary x_2 function $T(x_1, x_2) = x_1^{-1} \cdot c^{x_2}$,
- $U: \mathbb{F}_2^t \times \mathbb{F}_2^{n-t} \to \mathbb{F}_2^t$, when fixing an arbitrary x_1 function $U(x_2, x_1)$ is a permutation on the variable x_2 .

Then there exist such c_y , $y \in \mathbb{F}_{2^2}$, $c_{y_1} \neq c_{y_2}$ if $y_1 \neq y_2$, that the permutation F, given by equation (1) is a differentially 8-uniform permutation.

Cryptographic properties I

Proposition 7

Let
$$x_1 \in \mathbb{F}_2^{n-1}$$
, $n \in \mathbb{N}$ be an even number, $i \in \mathbb{N}$, $i \leq 2^{n-1} - 2$, $x_2 \in \mathbb{F}_2$, $c \in \mathbb{F}_{2^{n-1}} \setminus \{\theta, 1\}$, $T : \mathbb{F}_2^{n-1} \times \mathbb{F}_2 \to \mathbb{F}_2^{n-1}$, $T(x_1, x_2) = x_1^i \cdot c^{x_2}$, then $\deg T = |i| + 1$.

Remark 2

If in statements of propositions 2 and 3 the function f has an algebraic degree equal to 1, then the entire permutation F will also have an algebraic degree equal to 1.

Cryptographic properties II

Proposition 8

Under the conditions of propositions 2 and 3, the permutation F will have the graph algebraic immunity equals to 2.